
What is a minimal spanning tree What is a minimal spanning tree 
(MST) and how to find one(MST) and how to find one



A tree contains a A tree contains a 
root, the top root, the top 
node.node.

Each node has:Each node has:
One parentOne parent

Any number of Any number of 
childrenchildren



A spanning tree of a graph is a A spanning tree of a graph is a 
subgraph that contains all the vertices subgraph that contains all the vertices 
and is a tree (connected).and is a tree (connected).
A graph may have many spanning A graph may have many spanning 
trees, for exampletrees, for example

has 16 spanning trees.has 16 spanning trees.





Now suppose the edges were Now suppose the edges were 
weighted.weighted.

How do we find the spanning tree with How do we find the spanning tree with 
the minimum sum of edges.the minimum sum of edges.

This is called the minimal spanning This is called the minimal spanning 
tree.tree.



The standard application is to a problem like phone The standard application is to a problem like phone 
network design.network design.
You want to lease phone lines to connect several You want to lease phone lines to connect several 
offices with each other.offices with each other.
The phone company charges different amounts of The phone company charges different amounts of 
money to connect different pairs of cities.money to connect different pairs of cities.
You want a set of lines that connects all your You want a set of lines that connects all your 
offices with a minimum total cost.offices with a minimum total cost.
It should be a spanning tree, since if a network isn't It should be a spanning tree, since if a network isn't 
a tree you can always remove some edges and a tree you can always remove some edges and 
save money.save money.



A slow method is to list all the spanning A slow method is to list all the spanning 
trees and find the minimum from the list.trees and find the minimum from the list.

But there are far too many trees (16 in our But there are far too many trees (16 in our 
example for example for v v = 4).= 4).

A better idea is to find some key property of A better idea is to find some key property of 
the MST that lets us be sure that some edge the MST that lets us be sure that some edge 
is part of it, and use this property to build is part of it, and use this property to build 
up the MST one edge at a time. up the MST one edge at a time. 



For simplicity, we assume that there is For simplicity, we assume that there is 
a unique MST.a unique MST.

You can get ideas like this to work You can get ideas like this to work 
without this assumption, but it without this assumption, but it 
becomes harder to state your becomes harder to state your 
theorems or write your algorithms theorems or write your algorithms 
precisely. precisely. 



Let Let XX be any subset of the vertices of be any subset of the vertices of GG, and , and 
let edge let edge ee be the smallest edge connecting be the smallest edge connecting 
XX to to G G -- XX (vertexes not in (vertexes not in XX).).

Then Then ee is part of the MST.is part of the MST.

G

X G-X

e



Suppose you have a tree Suppose you have a tree TT not containing not containing ee..
Then we must prove that Then we must prove that TT is not the MST.is not the MST.
Let Let ee connect connect uu and and vv, with , with uu in in XX and and vv not not 
in in XX..

G

X G-X

e vu



Then because Then because TT is a spanning tree it is a spanning tree it 
contains a unique path from contains a unique path from uu to to vv, , 
which together with which together with ee forms a cycle in forms a cycle in 
GG..

G

X G-X

e vu
T



This path has to include another edge This path has to include another edge ff
connecting connecting XX to to G G -- XX..

TT + + e e -- ff is another spanning tree (same is another spanning tree (same 
number of edges, and remains connected).number of edges, and remains connected).

G

X G-X

e vu
f T + e - f



I t has smaller weight than t since I t has smaller weight than t since ee
has smaller weight than has smaller weight than ff..
So So TT was not minimum, which is what was not minimum, which is what 
we wanted to prove.we wanted to prove.
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X G-X

e vu
T + e - f



We'll start with Kruskal's algorithm, which is We'll start with Kruskal's algorithm, which is 
the easiest to understand and probably the the easiest to understand and probably the 
best one for solving problems by hand:best one for solving problems by hand:

sort the edges of G in increasing order by sort the edges of G in increasing order by 
lengthlength
keep a subgraph S of G, initially emptykeep a subgraph S of G, initially empty
for each edge e in sorted orderfor each edge e in sorted order

if the endpoints of e are disconnected in Sif the endpoints of e are disconnected in S
add e to Sadd e to S

return Sreturn S



Note that, whenever you add an edge (Note that, whenever you add an edge (uu,,vv), ), 
it's always the smallest connecting the part it's always the smallest connecting the part 
of of SS reachable from the rest of G, so by the reachable from the rest of G, so by the 
lemma it must be part of the MST.lemma it must be part of the MST.
This algorithm is a This algorithm is a greedy algorithmgreedy algorithm, , 
because it chooses at each step the because it chooses at each step the 
cheapest edge to add to cheapest edge to add to SS..
The greedy idea works in Kruskal's The greedy idea works in Kruskal's 
algorithm because of the key property we algorithm because of the key property we 
proved.proved.



The line testing whether two endpoints are The line testing whether two endpoints are 
disconnected looks like it should be slow disconnected looks like it should be slow 
(linear time per iteration, or O((linear time per iteration, or O(mnmn) total).) total).
The slowest part turns out to be the sorting The slowest part turns out to be the sorting 
step.step.
Therefore it is important to choose a fast Therefore it is important to choose a fast 
sorting algorithm.sorting algorithm.
Using quicksort takes Using quicksort takes O(O(mm log log mm) time, ) time, 
which is effectively the total runwhich is effectively the total run--time.time.



Kruskal's AlgorithmKruskal's Algorithm



Rather than build a subgraph one Rather than build a subgraph one 
edge at a time, Prim's algorithm builds edge at a time, Prim's algorithm builds 
a tree one vertex at a time:a tree one vertex at a time:

let T be a single vertex xlet T be a single vertex x

while (T has fewer than n vertices)while (T has fewer than n vertices)

find the smallest edge connecting T to Gfind the smallest edge connecting T to G--TT

add it to Tadd it to T



Since each edge added is the smallest Since each edge added is the smallest 
connecting connecting TT to to G G -- TT, the lemma we , the lemma we 
proved shows that we only add edges proved shows that we only add edges 
that should be part of the MST.that should be part of the MST.



Again, it looks like the loop has a slow Again, it looks like the loop has a slow 
step in it, O(step in it, O(nn22).).

We can speed it up.We can speed it up.

The idea is to use a heap to The idea is to use a heap to 
remember, for each vertex, the remember, for each vertex, the 
smallest edge connecting smallest edge connecting TT with that with that 
vertex.vertex.



make a heap of values (vertex,edge,weight(edge))make a heap of values (vertex,edge,weight(edge))
initially (v,initially (v,--,infinity) for each vertex,infinity) for each vertex

let T be a single vertex xlet T be a single vertex x
for each edge f=(u,v)for each edge f=(u,v)

add (u,f,weight(f)) to heapadd (u,f,weight(f)) to heap

while (T has fewer than n vertices)while (T has fewer than n vertices)
let (v,e,weight(e)) be the edge  with thelet (v,e,weight(e)) be the edge  with the

smallest weight on the heapsmallest weight on the heap
remove (v,e,weight(e)) from the heapremove (v,e,weight(e)) from the heap
add v and e to Tadd v and e to T
for each edge f=(u,v)for each edge f=(u,v)
if u is not already in Tif u is not already in T
find value (u,g,weight(g)) in heapfind value (u,g,weight(g)) in heap
if weight(f) < weight(g)if weight(f) < weight(g)

replace (u,g,weight(g)) withreplace (u,g,weight(g)) with
(u,f,weight(f))(u,f,weight(f))



We perform We perform nn steps in which we remove the steps in which we remove the 
smallest element in the heap, and at most smallest element in the heap, and at most 
mm steps in which we reduce the weight of steps in which we reduce the weight of 
the smallest edge connecting the smallest edge connecting TT to to GG -- TT..
For each of those steps, we might replace a For each of those steps, we might replace a 
value on the heap, reducing it's weight.value on the heap, reducing it's weight.
You also have to find the right value on the You also have to find the right value on the 
heap, but that can be done easily enough heap, but that can be done easily enough 
by keeping a pointer from the vertices to by keeping a pointer from the vertices to 
the corresponding values.the corresponding values.



You can reduce or delete the weight of an You can reduce or delete the weight of an 
element of the heap in O(log element of the heap in O(log nn) time.) time.
Alternately by using a more complicated Alternately by using a more complicated 
data structure known as a Fibonacci heap, data structure known as a Fibonacci heap, 
you can reduce the weight of an element to you can reduce the weight of an element to 
constant time.constant time.
Deletion is done Deletion is done nn times and reduction is times and reduction is 
done at most done at most mm times.times.
The result is a total time bound of        The result is a total time bound of        
O((O((mm + + nn) log ) log nn) or just O() or just O(mm log log nn).).



Prim's AlgorithmPrim's Algorithm



They both produce a MST:They both produce a MST:
Prim & Kruskal's AlgorithmsPrim & Kruskal's Algorithms
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Prim with a heap is about twice as fast as Prim with a heap is about twice as fast as 
Kruskal.Kruskal.
Kruskal is easier to code.Kruskal is easier to code.
Try them both and choose the one you Try them both and choose the one you 
prefer.prefer.
Learn how to do both, since sometimes one Learn how to do both, since sometimes one 
is much better than the other:is much better than the other:

Although Kruskal is slower, you may find it much Although Kruskal is slower, you may find it much 
easier to use.easier to use.



Cows want to maintain certain trails Cows want to maintain certain trails 
between fields.between fields.
The total length of trails maintained must be The total length of trails maintained must be 
minimized.minimized.
They start off with no trails , and after each They start off with no trails , and after each 
week they discover a new path.week they discover a new path.
Given the trails they discover each week, Given the trails they discover each week, 
you need to determine the total distance of you need to determine the total distance of 
the trails after each week.the trails after each week.



Recompute the MST after each week, Recompute the MST after each week, 
considering all trails ever seen.considering all trails ever seen.

Use Prim s or Kruskal s algorithm to Use Prim s or Kruskal s algorithm to 
compute the MST.compute the MST.

O(O(mm22 log log mm), where ), where mm is the total is the total 
number of paths.number of paths.

Will get about 50%.Will get about 50%.



The same as the previous solution, The same as the previous solution, 
considering only the best trail between considering only the best trail between 
any two fields.any two fields.

O(O(mm22 log log nn), where ), where nn is the number of is the number of 
fields.fields.

Will get about 60%.Will get about 60%.



The same as the previous solution, The same as the previous solution, 
considering only the trails in the considering only the trails in the 
previous MST and the new trail.previous MST and the new trail.

O(O(nmnm loglog nn).).

Will receive 100%.Will receive 100%.



Use a true incremental MST.Use a true incremental MST.
Each week, determine the path between the Each week, determine the path between the 
endpoints of the new trail and find the endpoints of the new trail and find the 
maximum length in that trail.maximum length in that trail.
If the length of this maximum trail is greater If the length of this maximum trail is greater 
than the new trail, delete that trail and add than the new trail, delete that trail and add 
the new one.the new one.
O (O (nmnm).).
Will receive 100%.Will receive 100%.


